Effects of Wholegrain Compared to Refined Grain Intake on Cardiometabolic Risk Markers, Gut Microbiota, and Gastrointestinal Symptoms in Children: A Randomized Crossover Trial.

The American journal of clinical nutrition. 2024;119(1):18-28
Full text from:

Other resources

Plain language summary

High consumption of wholegrain foods has been linked to a lower risk of cardiovascular disease (CVD) and type 2 diabetes. Some trials have shown benefits to body weight, blood lipids and glucose homeostasis but most of these studies are with adults. Cardiometabolic disease begins in childhood therefore data is needed for this age group to back up dietary recommendations in order to prevent later development of cardiometabolic disease. The aim of this randomized crossover trial was to look at the effects of wholegrain oats and rye intake on serum low-density lipoprotein (LDL), cholesterol and plasma insulin, other cardiometabolic markers, body composition, the composition of the gut microbiome and gastrointestinal symptoms in children with high body mass index (BMI). 55 healthy Danish children (aged 8 – 13) took part. They ate wholegrain oats and rye (WG) or refined grain products (RG) ad libtum for 8 weeks in random order. Measurements were taken at 0, 8 and 16 weeks. Compared with RG, WG reduced LDL cholesterol as well as total:high-density lipoprotein cholesterol and triacylglycerol. WG also modulated the abundance of specific types of gut bacteria, increased plasma acetate, propionate, and butyrate and fecal butyrate and reduced fatigue with no other effects on gut symptoms. This study supports the recommendation to swap refined grain for wholegrain oats and rye in children. Further studies are needed.

Abstract

BACKGROUND Wholegrain intake is associated with lower risk of cardiometabolic diseases in adults, potentially via changes in the gut microbiota. Although cardiometabolic prevention should start early, we lack evidence on the effects in children. OBJECTIVES This study investigated the effects of wholegrain oats and rye intake on serum low-density lipoprotein (LDL) cholesterol and plasma insulin (coprimary outcomes), other cardiometabolic markers, body composition, gut microbiota composition and metabolites, and gastrointestinal symptoms in children with high body mass index (BMI). METHODS In a randomized crossover trial, 55 healthy Danish 8- to 13-y-olds received wholegrain oats and rye ("WG") or refined grain ("RG") products ad libitum for 8 wk in random order. At 0, 8, and 16 wk, we measured anthropometry, body composition by dual-energy absorptiometry, and blood pressure. Fasting blood and fecal samples were collected for analysis of blood lipids, glucose homeostasis markers, gut microbiota, and short-chain fatty acids. Gut symptoms and stool characteristics were determined by questionnaires. Diet was assessed by 4-d dietary records and compliance by plasma alkylresorcinols (ARs). RESULTS Fifty-two children (95%) with a BMI z-score of 1.5 ± 0.6 (mean ± standard deviation) completed the study. They consumed 108 ± 38 and 3 ± 2 g/d wholegrain in the WG and RG period, which was verified by a profound difference in ARs (P < 0.001). Compared with RG, WG reduced LDL cholesterol by 0.14 (95% confidence interval: -0.24, -0.04) mmol/L (P = 0.009) and reduced total:high-density lipoprotein cholesterol (P < 0.001) and triacylglycerol (P = 0.048) without altering body composition or other cardiometabolic markers. WG also modulated the abundance of specific bacterial taxa, increased plasma acetate, propionate, and butyrate and fecal butyrate and reduced fatigue with no other effects on gut symptoms. CONCLUSION High intake of wholegrain oats and rye reduced LDL cholesterol and triacylglycerol, modulated bacterial taxa, and increased beneficial metabolites in children. This supports recommendations of exchanging refined grain with wholegrain oats and rye among children. This trial was registered at clinicaltrials.gov as NCT04430465.

Lifestyle medicine

Patient Centred Factors : Antecedents/Refined grains
Environmental Inputs : Diet
Personal Lifestyle Factors : Nutrition
Functional Laboratory Testing : Blood ; Stool
Bioactive Substances : Short chain fatty acids ; Butyrate ; Acetate ; Propionate

Methodological quality

Jadad score : 3
Allocation concealment : Yes

Metadata

Nutrition Evidence keywords : Children ; Gut microbiome ; Wholegrain ; Oats ; Rye ; Refined grain ; Cardiometabolic